Contraction Order
This package can be used as backend for finding the optimal tensor network contraction order.
OMEinsumContractionOrders.jl
A new optimizer has been added in OMEinsumContractionOrders.jl.
Here is an example of usage:
julia> using OMEinsum, OMEinsumContractionOrders
# define the contraction using Einstein summation
julia> code = ein"ijl, ikm, jkn, l, m, n -> "
ijl, ikm, jkn, l, m, n ->
ulia> optimizer = ExactTreewidth()
ExactTreewidth{GreedyMethod{Float64, Float64}}(GreedyMethod{Float64, Float64}(0.0, 0.0, 1))
# set the size of the indices
julia> size_dict = uniformsize(code, 2)
Dict{Char, Int64} with 6 entries:
'n' => 2
'j' => 2
'i' => 2
'l' => 2
'k' => 2
'm' => 2
julia> optcode = optimize_code(code, size_dict, optimizer)
n, n ->
├─ jk, jkn -> n
│ ├─ ij, ik -> jk
│ │ ├─ ijl, l -> ij
│ │ │ ├─ ijl
│ │ │ └─ l
│ │ └─ ikm, m -> ik
│ │ ├─ ikm
│ │ └─ m
│ └─ jkn
└─ n
# check the complexity
julia> contraction_complexity(optcode, size_dict)
Time complexity: 2^5.087462841250339
Space complexity: 2^2.0
Read-write complexity: 2^5.882643049361841
# check the results
julia> A = rand(2, 2, 2); B = rand(2, 2, 2); C = rand(2, 2, 2); D = rand(2); E = rand(2); F = rand(2);
julia> code(A, B, C, D, E, F) ≈ optcode(A, B, C, D, E, F)
true
TensorOperations.jl
This optimizer will be used as an extension of TensorOperations.jl in the future, see this PR. We compared the performance of this method against the default optimizer of TensorOperations.jl based on exhaustive searching, the results is shown below.
The results shown that the tree width based solver is faster for some graph similar to trees. For more details, please see the benchmark repo: https://github.com/ArrogantGao/TreeWidthSolver_benchmark.