Manual for TreeWidthSolver.jl
API
TreeWidthSolver.DecompositionTreeNode
TreeWidthSolver.MaskedBitGraph
TreeWidthSolver.TreeDecomposition
TreeWidthSolver.adjacency_mat
TreeWidthSolver.decomposition_tree
TreeWidthSolver.elimination_order
TreeWidthSolver.exact_treewidth
TreeWidthSolver.graph_from_gr
TreeWidthSolver.graph_from_tuples
TreeWidthSolver.line_graph
TreeWidthSolver.save_graph
TreeWidthSolver.simple_graph
Data Type
TreeWidthSolver.MaskedBitGraph
— Typemutable struct MaskedBitGraph{INT}
A mutable struct representing a masked bit graph.
Fields
MaskedBitGraph::Vector{INT}
: Stores the adjacency matrix as a vector of BitStr.fadjlist::Vector{Vector{Int}}
: Stores the adjacency list, providing information about the sparse graph.mask::INT
: The mask for the graph.
TreeWidthSolver.DecompositionTreeNode
— Typemutable struct DecompositionTreeNode{T}
A mutable struct representing a node in a tree decomposition.
Fields
bag::Set{T}
: The bag of the node, which is a set of elements of typeT
.parent::Union{DecompositionTreeNode{T}, Nothing}
: The parent node of the current node. It can be either aDecompositionTreeNode{T}
orNothing
if the current node is the root.children::Vector{DecompositionTreeNode{T}}
: The children nodes of the current node, stored in a vector.
TreeWidthSolver.TreeDecomposition
— Typestruct TreeDecomposition{TW, TL}
A struct representing a tree decomposition.
Fields
tw::TW
: The treewidth of the decomposition.tree::DecompositionTreeNode{TL}
: The root node of the decomposition tree.
IO for Graphs
TreeWidthSolver.graph_from_gr
— Functiongraph_from_gr(filename)
Reads a graph from a file in the .gr format (PACE format) and returns a SimpleGraph
object.
Arguments
filename
: The path to the input file.
Returns
graph
: ASimpleGraph
object representing the graph.
TreeWidthSolver.save_graph
— Functionfunction save_graph(g::SimpleGraph, filename)
The graph will be saved as .gr format, in PACE format, where the first line is p tw nv ne
, and the following lines are the edges src dst
TreeWidthSolver.graph_from_tuples
— Functiongraph_from_tuples(n::Int, edgs)
Constructs a graph from a list of tuples representing edges.
Arguments
n::Int
: The number of vertices in the graph.edgs
: A list of tuples representing the edges of the graph.
Returns
A graph object.
Hypergraph
TreeWidthSolver.line_graph
— Functionline_graph(adjacency_mat::SparseMatrixCSC)
Constructs the line graph of a given graph represented by its adjacency matrix.
Arguments
adjacency_mat::SparseMatrixCSC
: The adjacency matrix of the input graph, where the columns represent the vertices and the rows represent the edges. The value istrue
if the edge is connected to the vertex.
Returns
g::SimpleGraph
: The line graph of the input graph.
TreeWidthSolver.simple_graph
— Functionsimple_graph(adjacency_mat::SparseMatrixCSC)
Constructs a simple undirected graph from a sparse adjacency matrix.
Arguments
adjacency_mat::SparseMatrixCSC
: The sparse adjacency matrix representing the graph.
Returns
g::SimpleGraph
: The constructed simple undirected graph.
TreeWidthSolver.adjacency_mat
— Functionadjacency_mat(graph::SimpleGraph)
Constructs the adjacency matrix of a given SimpleGraph
.
Arguments
graph::SimpleGraph
: The input graph.
Returns
SparseMatrixCSC{Int}
: The adjacency matrix of the graph.
Treewidth
TreeWidthSolver.exact_treewidth
— Functionexact_treewidth(g::SimpleGraph{TG}; weights::Vector{TW} = ones(nv(g)), verbose::Bool = false) where {TG, TW}
Compute the exact treewidth of a given graph g
using the BT algorithm.
Arguments
g::SimpleGraph{TG}
: The input graph.weights::Vector{TW} = ones(nv(g))
: The weights of the vertices in the graph. Default is equal weights for all vertices.verbose::Bool = false
: Whether to print verbose output. Default isfalse
.
Returns
tw
: The treewidth of the graph.
TreeWidthSolver.decomposition_tree
— Functiondecomposition_tree(g::SimpleGraph{TG}; labels::Vector{TL} = collect(1:nv(g)), weights::Vector{TW} = ones(nv(g)), verbose::Bool = false) where {TG, TW, TL}
Constructs a decomposition tree for a given simple graph g
.
Arguments
g::SimpleGraph{TG}
: The input graph.labels::Vector{TL}
: (optional) The labels for the vertices of the graph. Default iscollect(1:nv(g))
.weights::Vector{TW}
: (optional) The weights for the vertices of the graph. Default isones(nv(g))
.verbose::Bool
: (optional) Whether to print verbose output. Default isfalse
.
Returns
TreeDecomposition
: The resulting decomposition tree, where treewidht is stored intd.tw
and the tree is stored intd.tree
.
decomposition_tree(g::SimpleGraph{TG}, orders::Union{Vector{Vector{TE}}, Vector{TE}}; labels::Vector{TL} = [1:length(vertices(g))...]) where {TG, TE, TL}
Constructs a decomposition tree for a given simple graph g
based on the provided orders.
Arguments
g::SimpleGraph{TG}
: The input graph.orders::Union{Vector{Vector{TE}}, Vector{TE}}
: The orders for constructing the decomposition tree. Can be a vector of vectors or a single vector.labels::Vector{TL}
: (optional) The labels for the vertices of the graph. Default iscollect(1:nv(g))
.
Returns
TreeDecomposition
: The resulting decomposition tree, where the tree is labeled according to the provided labels.
Raises
AssertionError
: If the length ofnew_orders
does not match the number of vertices ing
, ifnew_orders
contains duplicates, or if the length oflabels
does not match the length ofnew_orders
.
TreeWidthSolver.elimination_order
— Functionelimination_order(g::SimpleGraph{TG}; labels::Vector{TL} = collect(1:nv(g)), weights::Vector{TW} = ones(nv(g)), verbose::Bool = false) where {TG, TL, TW}
Compute the elimination order of a graph g
using the BT algorithm.
Arguments
g::SimpleGraph{TG}
: The input graph.labels::Vector{TL}
: (optional) Labels for the vertices ofg
. Default iscollect(1:nv(g))
.weights::Vector{TW}
: (optional) Weights for the vertices ofg
. Default isones(nv(g))
.verbose::Bool
: (optional) Whether to print verbose output. Default isfalse
.
Returns
labeled_eo::Vector{Vector{TL}}
: The elimination order of the graphg
, where each vertex is labeled according tolabels
.